Exercise 2 (21.11.2023)

Test

1. The birthday attack on hash function findspreimage2nd preimagecollision
2. HMAC processes each block of the input message twice.
\square yesno
3. Let's compare the signature length of DSA and ElGamal scheme, while requiring the same security level. Signatures in DSA are
\square shorterlonger \square equal length
4. PBKDF2 uses, beside a password, a salt as a input.yesno
5. The plaintext in Regev scheme based on LWE problem (Learning with Errors) over \mathbb{Z}_{q} is selected from the set$\{0,1\}$
$\mathbb{Z}_{q}$$\left\{-\frac{q-1}{2}, \ldots, \frac{q-1}{2}\right\}$
6. Merkleho-Damgård construction of hash function guarantees that the resulting hash function is collision resistant if the compression function is collision resistant.no
7. The signature scheme RSA PKCS\#1 v1.5 isdeterministicrandomized
8. We expect that the more computationally complex operation in the Merkle signature scheme (MSS) isverificationsigning
9. A deficiency of PBKDF2 function (when used for storing passwords) in relations to dictionary attacks is
\square low memory complexityimpossibility to parallelize the computationlimited output length
10. The Schnorr signature scheme is immune to random message forgery.yesno
11. McEliece scheme for asymmetric encryption is not secure if the underlying error-correcting code corrects at most 1 error.yesno
12. Hellman table for finding password corresponding to a given hash. Transformations from hash values to passwords are \square distinct for each row and columndistinct for each rowthe same for each row and column
13. Let H be a collision-resistant hash function. Then $G(x)=H(x) \oplus H(\bar{x})$ is collision-resistant.yesno
14. Merkle signature scheme uses a tree with depth k (a root has depth 0). The scheme allows signing1 messagek messages2^{k} messages$2^{k+1}-1$ messages
15. Using salt when storing passwords has the following goal:slow down hash computation in dictionary attackprevent brute-force attackslow down an attacker in guessing passwords on-line \square prevent precomputation of hashes in advance.
16. The complexity of decryption in Regev scheme (based on LWE problem, with private key/vector length n) is$O(\log n)$$O(n)$$O(n \log n)$$O\left(n^{2}\right)$
17. Let h be the length of a hash function output and k be the key length. Then the output length of HMAC is$h$$h+k$$2 h$$2 h+k$none of the other answers

Problems

1. (Curveball 2020) A public key of a user in ECDSA scheme is $Q=d G$, where $d \in \mathbb{Z}_{n}^{*}$ is a private key (the elliptic curve subgroup generated by G has order n, where n is a prime number). Show anyone can forge a signature for any message m, if the recipient accepts arbitrary G^{\prime} as a parameter of the scheme (other parameters are not modified).
2. Let E be a block cipher (e.g. AES-128). Predpokladajme, že dížka správy je vždy násobkom dĺžky bloku (označme správu m rozdelenú na bloky takto: $m=m_{1}, m_{2}, \ldots, m_{n}$). Zdôvodnite, prečo nasledujúce konštrukcie nie sú vhodné ako MAC:
a) $H_{k}(m)=\left(c_{0}, c_{n}\right)$, kde c_{n} je posledný blok získaný šifrovaním m pomocou E_{k} v CFB móde a c_{0} je náhodne zvolený IV,
b) $G_{k}(m)=E_{m_{n}}\left(\ldots E_{m_{2}}\left(E_{k}\left(m_{1}\right)\right) \ldots\right)$, kde predpokladáme, že v E je dĺžka bloku zhodná s dĺžkou klúča,
c) $F_{k}(m)=E_{k}\left(m_{1}\right) \oplus E_{k}\left(E_{k}\left(m_{2}\right)\right) \oplus \ldots \oplus E_{k}^{n}\left(m_{n}\right)$.
3. Decide and justify the security of the following variants of Schnorr signature scheme (parameters are the same as in original scheme;certainly, the verification equation must be adjusted accordingly):
a) The value s is modified: $s=k+r+x \bmod q(r$ remains unchanged $)$.
b) The value s is modified: $s=k-r x \bmod q(r$ remains unchanged $)$.
4. We modify Goldreich signature scheme so that in the tree each non-leaf (parent) node has 4 children. We sign the 256 -bit hash of a message.
a) Describe how signing and verification will be performed in the new scheme.
b) Compare the lengths of public key, private key, and signature in the original and the new scheme. For OTS scheme used in the construction we denote by v the length of the public key, by s the length of the private key, and by p the length of the signature.
c) Compare the time complexity of signing in both schemes. Let g be a complexity single OTS scheme generation, and let f be a complexity of signing in a OTS scheme.
5. Let g be a generator of the group $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$, for a large prime number p. We divide the message m into blocks $m=m_{1}, m_{2}, \ldots, m_{n}$, where each $m_{i} \in \mathbb{Z}_{p}$. Decide and justify the collision-resistance of the following hash functions:
a) $H(m)=h_{n}$, kde $h_{i}=g^{h_{i-1}+m_{i}}$ a $h_{0}=0$;
b) $H(m)=h_{n}$, kde $h_{i}=g^{m_{i}} \cdot h_{i-1}$ a $h_{0}=2020$.
6. The attacker knows the ciphertext $c=m G^{\prime}+e$ in McEliece scheme, where $\mathrm{wt}(e) \leq t$. Let's assume the attacker can distinguish for a ciphertext c^{\prime} whether there at most t errors in c^{\prime} and decryption results in m (situation A), or there is more than t errors or decrypted text is not m (situation B). Describe and justify how the attacker with access to the oracle distinguishing situations A and B can remove the error vector e from c, i.e. get $x=m G^{\prime}$. Calculate the number of required oracle queries in the worst case.
Hint: Split the attack into two parts. In the first one compute c^{*} from c, such that c^{*} has exactly $t+1$ errors with respect to x.
